Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559260

RESUMO

Accurate identification of germline de novo variants (DNVs) remains a challenging problem despite rapid advances in sequencing technologies as well as methods for the analysis of the data they generate, with putative solutions often involving ad hoc filters and visual inspection of identified variants. Here, we present a purely informatic method for the identification of DNVs by analyzing short-read genome sequencing data from proband-parent trios. Our method evaluates variant calls generated by three genome sequence analysis pipelines utilizing different algorithms-GATK HaplotypeCaller, DeepTrio and Velsera GRAF-exploring the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. We assessed the efficacy of our method by testing DNVs identified using a previously established, highly accurate classification procedure that partially relied on manual inspection and used Sanger sequencing to validate a DNV subset comprising less confident calls. The results show that our method is highly precise and that applying a force-calling procedure to putative variants further removes false-positive calls, increasing precision of the workflow to 99.6%. Our method also identified novel DNVs, 87% of which were validated, indicating it offers a higher recall rate without compromising accuracy. We have implemented this method as an automated bioinformatics workflow suitable for large-scale analyses without need for manual intervention.

2.
Genet Med ; : 101125, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38522068

RESUMO

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report three unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs (GRs) of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type GR can rescue the lethality and autophagic flux defects whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).

3.
Cell Metab ; 36(4): 793-807.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378001

RESUMO

Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-ß/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.


Assuntos
Tecido Adiposo , Envelhecimento , Camundongos , Animais , Envelhecimento/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Knockout , Fibrose , Imunoglobulina G
4.
Endocr Rev ; 45(2): 253-280, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971140

RESUMO

This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.


Assuntos
Leptina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Feminino , Humanos , Leptina/metabolismo , Adiposidade/fisiologia , Obesidade/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Insulina/metabolismo
5.
NPJ Genom Med ; 8(1): 33, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865656

RESUMO

Bassoon (BSN) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo (PCLO) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with p-value of 3.6e-12 in the UK biobank cohort. Additionally, we identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity and report the clinical histories of these individuals with non-syndromic obesity with no history of neurobehavioral or cognitive disability. The BMI association was replicated in the All of Us whole genome sequencing data. Heterozygous pLoF BSN variants constitute a new etiology for obesity.

6.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240244

RESUMO

Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.


Assuntos
Surdez , Perda Auditiva , Doenças do Sistema Nervoso Periférico , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Surdez/genética , Perda Auditiva/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Fenótipo
7.
medRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865254

RESUMO

Bassoon ( BSN ) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo ( PCLO ) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with log10-p value of 11.78 in the UK biobank cohort. The association was replicated in the All of Us whole genome sequencing data. Additionally, we have identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity at Columbia University. Like the individuals identified in the UKBB and All of us Cohorts, these individuals have no history of neurobehavioral or cognitive disability. Heterozygosity for pLoF BSN variants constitutes a new etiology for obesity.

8.
Front Endocrinol (Lausanne) ; 13: 1032491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329895

RESUMO

Understanding the developmental origins of health and disease is integral to overcome the global tide of obesity and its metabolic consequences, including atherosclerotic cardiovascular disease, type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease. The rising prevalence of obesity has been attributed, in part, to environmental factors including the globalization of the western diet and unhealthy lifestyle choices. In this review we argue that how and when such exposures come into play from conception significantly impact overall risk of obesity and later health outcomes. While the laws of thermodynamics dictate that obesity is caused by an imbalance between caloric intake and energy expenditure, the drivers of each of these may be laid down before the manifestation of the phenotype. We present evidence over the last half-century that suggests that the temporospatial evolution of obesity from intrauterine life and beyond is, in part, due to the conditioning of physiological processes at critical developmental periods that results in maladaptive responses to obesogenic exposures later in life. We begin the review by introducing studies that describe an association between perinatal factors and later risk of obesity. After a brief discussion of the pathogenesis of obesity, including the systemic regulation of appetite, adiposity, and basal metabolic rate, we delve into the mechanics of how intrauterine, postnatal and early childhood metabolic environments may contribute to adult obesity risk through the process of metabolic conditioning. Finally, we detail the specific epigenetic pathways identified both in preclinical and clinical studies that synergistically "program" obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Gravidez , Feminino , Pré-Escolar , Humanos , Diabetes Mellitus Tipo 2/complicações , Obesidade/genética , Epigenômica , Adiposidade , Epigênese Genética
9.
Commun Biol ; 5(1): 779, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918471

RESUMO

Mutations in HNF1A cause Maturity Onset Diabetes of the Young (HNF1A-MODY). To understand mechanisms of ß-cell dysfunction, we generated stem cell-derived pancreatic endocrine cells with hypomorphic mutations in HNF1A. HNF1A-deficient ß-cells display impaired basal and glucose stimulated-insulin secretion, reduced intracellular calcium levels in association with a reduction in CACNA1A expression, and accumulation of abnormal insulin granules in association with SYT13 down-regulation. Knockout of CACNA1A and SYT13 reproduce the relevant phenotypes. In HNF1A deficient ß-cells, glibenclamide, a sulfonylurea drug used in the treatment of HNF1A-MODY patients, increases intracellular calcium, and restores insulin secretion. While insulin secretion defects are constitutive in ß-cells null for HNF1A, ß-cells heterozygous for hypomorphic HNF1A (R200Q) mutations lose the ability to secrete insulin gradually; this phenotype is prevented by correction of the mutation. Our studies illuminate the molecular basis for the efficacy of treatment of HNF1A-MODY with sulfonylureas, and suggest promise for the use of cell therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Insulina Regular Humana , Células-Tronco/metabolismo , Sinaptotagminas
10.
J Med Genet ; 59(12): 1171-1178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35803701

RESUMO

BACKGROUND: Lowe syndrome (LS) is an X linked disease caused by pathogenic variants in the OCRL gene that impacts approximately 1 in 500 000 children. Classic features include congenital cataract, cognitive/behavioural impairment and renal tubulopathy. METHODS: This study is a retrospective review of clinical features reported by family based survey conducted by Lowe Syndrome Association. Frequency of non-ocular clinical feature(s) of LS and their age of onset was summarised. An LS-specific therapy effectiveness scale was used to assess the response to the administered treatment. Expression of OCRL and relevant neuropeptides was measured in postmortem human brain by qPCR. Gene expression in the mouse brain was determined by reanalysis of publicly available bulk and single cell RNA sequencing. RESULTS: A total of 137 individuals (1 female, 89.1% white, median age 14 years (range 0.8-56)) were included in the study. Short stature (height <3rd percentile) was noted in 81% (n=111) individuals, and 15% (n=20) received growth hormone therapy. Undescended testis was reported in 47% (n=64), and median age of onset of puberty was 15 years. Additional features were dental problems (n=77, 56%), bone fractures (n=63, 46%), hypophosphataemia (n=60, 44%), developmental delay and behavioural issues. OCRL is expressed in human and mouse hypothalami, and in hypothalamic cell clusters expressing Ghrh, Sst, Oxt, Pomc and pituitary cells expressing Gh and Prl. CONCLUSIONS: There is a wide spectrum of the clinical phenotype of LS. Some of the features may be partly driven by the loss of function of OCRL in the hypothalamus and the pituitary.


Assuntos
Catarata , Síndrome Oculocerebrorrenal , Criança , Masculino , Animais , Camundongos , Feminino , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fenótipo , Catarata/genética , Encéfalo/metabolismo
11.
Int J Obes (Lond) ; 46(1): 39-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475504

RESUMO

BACKGROUND/OBJECTIVES: The murine postnatal leptin surge occurs within the first 4 weeks of life and is critical for neuronal projection development within hypothalamic feeding circuits. Here we describe the influence of nutritional status on the timing and magnitude of the postnatal leptin surge in mice. METHODS: Plasma leptin concentrations were measured 1-3 times per week for the first 4 weeks of life in C57BL/6J pups reared in litters adjusted to 3 (small), 7-8 (normal), or 11-12 (large) pups per dam fed breeder chow or raised in litters of 7-8 by dams fed high-fat diet (HFD) ad libitum starting either prior to conception or at parturition. RESULTS: Mice raised in small litters become fatter than pups raised in either normal or large litters. The leptin surge in small litter pups starts earlier, lasts longer, and is dramatically larger in magnitude compared to normal litter pups, even when leptin concentrations are normalized to fat mass. In mice reared in large litters, weight gain is diminished and the surge is both significantly delayed and lower in magnitude compared to control pups. Pups reared by HFD-fed dams (starting preconception or at parturition) are fatter and have augmented leptin surge magnitude compared to pups suckled by chow-fed dams. Surge timing varies depending upon nutritional status of the pup; the source of the surge is primarily subcutaneous adipose tissue. At peak leptin surge, within each group, fat mass and plasma leptin are uncorrelated; in comparison with adults, pups overproduce leptin relative to fat mass. Plasma leptin elevation persists longer than previously described; at postnatal day 27 mice continue overproducing leptin relative to fat mass. CONCLUSIONS: In mice, small litter size and maternal HFD feeding during the perinatal period augment the plasma leptin surge whereas large litter size is associated with a delayed surge of reduced magnitude.


Assuntos
Leptina/análise , Estado Nutricional/fisiologia , Período Pós-Parto/metabolismo , Fatores de Tempo , Animais , Área Sob a Curva , Modelos Animais de Doenças , Leptina/sangue , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL/sangue , Camundongos Endogâmicos C57BL/metabolismo , Curva ROC
12.
Am J Med Genet A ; 188(1): 336-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585832

RESUMO

Exome and genome sequencing were used to identify the genetic etiology of a severe neurodevelopmental disorder in two unrelated Ashkenazi Jewish families with three affected individuals. The clinical findings included a prenatal presentation of microcephaly, polyhydramnios and clenched hands while postnatal findings included microcephaly, severe developmental delay, dysmorphism, neurologic deficits, and death in infancy. A shared rare homozygous, missense variant (c.274A > G; p.Ser92Gly, NM_024516.4) was identified in PAGR1, a gene currently not associated with a Mendelian disease. PAGR1 encodes a component of the histone methyltransferase MLL2/MLL3 complex and may function in the DNA damage response pathway. Complete knockout of the murine Pagr1a is embryonic-lethal. Given the available evidence, PAGR1 is a strong candidate gene for a novel autosomal recessive severe syndromic neurodevelopmental disorder.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Alelos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Humanos , Camundongos , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
13.
Front Physiol ; 12: 789519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955895

RESUMO

LEP is a pleiotropic gene and the actions of leptin extend well beyond simply acting as the signal of the size of adipose tissue stores originally proposed. This is a discussion of the multi-system interactions of leptin with the development of the neural systems regulating energy stores, and the subsequent maintenance of energy stores throughout the lifespan. The prenatal, perinatal, and later postnatal effects of leptin on systems regulating body energy stores and on the energy stores themselves are heavily influenced by the nutritional environment which leptin exposure occurs. This review discusses the prenatal and perinatal roles of leptin in establishing the neuronal circuitry and other systems relevant to the adiposity set-point (or "threshold") and the role of leptin in maintaining weight homeostasis in adulthood. Therapeutic manipulation of the intrauterine environment, use of leptin sensitizing agents, and identification of specific cohorts who may be more responsive to leptin or other means of activating the leptin signaling pathway are ripe areas for future research.

14.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34283813

RESUMO

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidade/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Masculino , Camundongos , Obesidade/genética , RNA-Seq
15.
Cell Metab ; 33(6): 1155-1170.e10, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951475

RESUMO

Pathologies of the micro- and macrovascular systems are a hallmark of the metabolic syndrome, which can lead to chronically elevated blood pressure. However, the underlying pathomechanisms involved still need to be clarified. Here, we report that an obesity-associated increase in serum leptin triggers the select expansion of the micro-angioarchitecture in pre-autonomic brain centers that regulate hemodynamic homeostasis. By using a series of cell- and region-specific loss- and gain-of-function models, we show that this pathophysiological process depends on hypothalamic astroglial hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling downstream of leptin signaling. Importantly, several distinct models of HIF1α-VEGF pathway disruption in astrocytes are protected not only from obesity-induced hypothalamic angiopathy but also from sympathetic hyperactivity or arterial hypertension. These results suggest that hyperleptinemia promotes obesity-induced hypertension via a HIF1α-VEGF signaling cascade in hypothalamic astrocytes while establishing a novel mechanistic link that connects hypothalamic micro-angioarchitecture with control over systemic blood pressure.


Assuntos
Astrócitos/metabolismo , Hipertensão/metabolismo , Hipotálamo/metabolismo , Leptina/fisiologia , Obesidade/metabolismo , Animais , Astrócitos/patologia , Feminino , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Pediatr Endocrinol Metab ; 34(5): 633-638, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33852230

RESUMO

OBJECTIVES: There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. METHODS: We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. RESULTS: Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. CONCLUSIONS: Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 2/epidemiologia , Sequenciamento do Exoma/métodos , Quinases do Centro Germinativo/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Mutação , Sistema de Registros/estatística & dados numéricos , Adulto , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Testes Genéticos , Humanos , Masculino , New York/epidemiologia , Fenótipo , Prognóstico , Adulto Jovem
17.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
18.
Diabetes Obes Metab ; 23(3): 850-853, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236485

RESUMO

Naltrexone/bupropion (NB) is a US Food and Drug Administration-approved antiobesity medication. Clinical trials have shown variable weight loss, with responders and non-responders. NB is believed to act on central dopaminergic pathways to suppress appetite. The Taq1A polymorphism near DRD2 (rs1800497) is associated with the density of striatal dopamine D2 receptors, with individuals carrying the A allele (AA or AG; termed A1+) having 30%-40% fewer dopamine binding sites than those who do not carry the A allele (GG; termed A1-). We performed a pilot study to assess the association of the rs1800497 ANKK1 c.2137G > A (p.Glu713Lys) variant with weight loss with NB treatment in 33 subjects. Mean (SD) weight loss was 5.9% (3.2%) for the A1+ genotype group (n = 15) and 4.2% (4.2%) for the A1- genotype group (n = 18). The mean weight loss for the A1+ genotype group was significantly greater than the predefined clinically significant 4% weight-loss target (one-sample t-test, P = .035), whereas the mean weight loss for the A1- genotype group was not (P = .85). Individuals with the A1+ genotype appear to respond better to NB than A1- individuals.


Assuntos
Bupropiona , Naltrexona , Bupropiona/uso terapêutico , Genótipo , Humanos , Naltrexona/uso terapêutico , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases , Receptores de Dopamina D2/genética , Redução de Peso/genética
19.
Sci Transl Med ; 12(524)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894105

RESUMO

Leptin plays a role in central nervous system developmental programs and intercurrent physiological processes related to body fat regulation. The timing and neuromolecular mechanisms for these effects are relevant to the prevention and treatment of obesity. Factors implicated in a body weight "set point" including dietary fat, circulating leptin, and other adipokines tend to covary with adiposity and are difficult to disarticulate experimentally. To dissociate leptin effects from adiposity and diet, we created a transgenic mouse in which leptin expression is regulated by doxycycline exposure. Using this system, we investigated the physiological consequences of developmentally-timed transient hyperleptinemia on subsequent adiposity. We evaluated physiological effects of leptin elevation during adulthood (9 to 29 weeks old), "adolescence" (3 to 8 weeks old), and the immediate postnatal period [postnatal days 0 to 22 (P0 to P22)] on long-term adiposity and susceptibility to gain weight on high-fat diet (HFD) fed ad libitum. We found that inducing chronic hyperleptinemia in adult or "adolescent" mice did not alter body weight when excess leptin was discontinued, and upon later exposure to HFD, weight gain did not differ from controls. However, transient elevation of circulating leptin from P0 to P22 increased weight and fat gain in response to HFD, indicating greater susceptibility to obesity as adults. Thus, transient plasma leptin elevations-mimicking one aspect of transient adiposity-increased later susceptibility to diet-induced obesity, although these effects were restricted to a critical developmental (P0 to P22) time window. These findings may have clinical implications for weight management in infancy.


Assuntos
Envelhecimento/fisiologia , Peso Corporal/fisiologia , Leptina/sangue , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Doença Crônica , Doxiciclina/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reprodutibilidade dos Testes
20.
Cell Metab ; 30(4): 614-616, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577926

RESUMO

The clinical use of the hormone leptin, a key regulator of food intake, to treat the most common instances of obesity has so far failed. In this issue, Zhao et al. (2019) report that, paradoxically, reducing leptin levels in obese mice increases their sensitivity to the concentrations that remain, and leads to reductions in weight gain, thus suggesting why these earlier trials may have failed and possibly a new approach to treating obesity.


Assuntos
Leptina , Redução de Peso , Animais , Insulina , Camundongos , Neurobiologia , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...